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Abstract—With regard to quantitative remote sensing products
in the visible and infrared ranges, thick clouds and accompanying
shadows are an inevitable source of noise. Due to the absence
of adequate supporting information from the data themselves,
it is a formidable challenge to accurately restore the surficial
information underlying large-scale clouds. In this paper, dictio-
nary learning is expanded into the multitemporal recovery of
quantitative data contaminated by thick clouds and shadows. This
paper proposes two multitemporal dictionary learning algorithms,
expanding on their KSVD and Bayesian counterparts. In order to
make better use of the temporal correlations, the expanded KSVD
algorithm seeks an optimized temporal path, and the expanded
Bayesian method adaptively weights the temporal correlations.
In the experiments, the proposed algorithms are applied to a
reflectance product and a land surface temperature product, and
the respective advantages of the two algorithms are investigated.
The results show that, from both the qualitative visual effect and
the quantitative objective evaluation, the proposed methods are
effective.

Index Terms—Compressed sensing (CS), dictionary learning,
land surface temperature (LST), multitemporal, quantitative re-
mote sensing (QRS) product, reflectance, shadows, thick clouds.

I. INTRODUCTION

ITH the ongoing development of both economy and
technology, quantitative products of remote sensing
(RS) have been attracting more and more attention in all
kinds of practical applications due to their physical signifi-
cance. However, cloud cover and cloud shadow are two of
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the most common noise sources for the majority of RS data
in the range of the visible and infrared spectra. As a result,
recovering the data contaminated by clouds and the attendant
shadows is of great significance for many users’ demands,
such as target recognition, classification, segmentation, feature
extraction, etc.

There has been a great deal of cloud removal algorithms
developed for RS images. For example, several inpainting
methods (just utilizing the information in the images them-
selves), including the techniques of nearest neighbor inter-
polation and partial differential equations [1], three different
strategies for propagating the spectrogeometrical information
[2], and bandelet transform [3], have all been applied to this
cumbersome task. In addition, the methods designed for dead
or missing pixels in [4]—[7] can also be used for cloud removal.
Unfortunately, a drawback inherited by the inpainting-based
nature is their sensitivity to the size of the missing area [2].
To break through this bottleneck, some scholars have resorted
to multitemporal processing approaches such as mosaicking
the cloud-free areas of multitemporal images [8], information
cloning [9], fitting the temporal relationship [10], etc. In order
to guarantee a smooth transition from cloud-contaminated area
to cloud-free area, color adjustment, which brings about a
certain distortion, is usually necessary.

There are, however, fewer cloud removal algorithms for
quantitative remote sensing (QRS) products than for RS im-
ages. Kriging interpolation, a simple and mature method, has
been used in this field by direct interpolation [11] and fit-
ting [12]. However, it is only suitable for low-albedo areas
such as water and dense vegetation areas. The Savitzky—Golay
(SG) filter [13], a simplified least-squares-fit convolution for
smoothing and computing derivatives of a set of consecutive
values, has been used for the recovery of cloud contamination
of the normalized difference vegetation index (NDVI) [14].
Harmonic analysis, also termed spectral analysis or Fourier
analysis, decomposes a time-dependent periodic phenomenon
into a series of sinusoidal functions, each defined by unique
amplitude and phase values [15]. This approach has been
widely applied to the recovery of missing QRS data [16]-[18].
Roerink et al. [19] reconstructed cloud-free NDVI using the
harmonic analysis of time series (HANTS) algorithm. The SG
filter and harmonic analysis can be used to interpolate missing
data for multitemporal analysis, especially for long time-series
and periodic data, which is also their intrinsic limitation for

0196-2892 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



LI et al.: RECOVERING QRS PRODUCTS CONTAMINATED BY THICK CLOUDS AND SHADOWS

most practical applications. In other words, if the time series
is not long enough, these approaches cannot derive satisfactory
results.

As the traditional methods are easily affected by the size of
the cloud area, the multitemporal mosaicking/fitting algorithms
easily cause distortions, and the harmonic analysis approaches
need a large amount of temporal data, the approaches for
retrieving data beneath thick clouds and shadows need im-
provements based on a novel framework. In recent years, the
flourishing and popular compressed sensing (CS) theory, or the
so-called compressed sampling, as proposed by Donoho [20],
Candes and Tao [21], and Romberg et al. [22], has started a
revolution in the signal/image processing field. By means of
this theory, it is possible to reconstruct a compressible or sparse
signal in a fixed transform domain with a very high accuracy
from a small number of random measurements by solving a
linear program [21]. Exploiting this advantage, Lorenzi et al.
[23] proposed a CS solution for missing-area reconstruction in
multispectral images under a compressive sensing perspective
through a formulation within a multiobjective genetic opti-
mization scheme. However, they only utilized two temporal
images (a contaminated image and a cloud-free image), and
the latent temporal correlations in multitemporal data were not
utilized. Additionally, cloud removal for QRS products was not
investigated.

Specifically, in our proposed methods, we restore the in-
formation beneath the thick clouds and shadows of QRS data
using a series of multitemporal quantitative products. Two kinds
of expanded multitemporal dictionary learning methods in re-
spective KSVD (the method proposed in [24]) and Bayesian
(the method used in [25]) frameworks are proposed. This
paper makes several novel contributions. First, we introduce CS
theory into the recovery of QRS products, and to the best of our
knowledge, it is the first time that the CS theory has been used in
the recovery of multitemporal cloudy quantitative data. Second,
to make the best use of the temporal correlations in the time-
series data, we propose to seek an optimized temporal path and
temporal transformation for KSVD, and we adaptively trade off
their weights in the Bayesian framework. Put more broadly,
they have different advantages, depending on the amount of
data available.

The remainder of this paper is organized as follows. In the
next section, we describe the recoveries of QRS products based
on multitemporal dictionary learning, including multitemporal
KSVD and multitemporal Bayesian dictionary learning. This
is followed by the quantitative evaluation experiments and real
experiments with QRS products contaminated by thick clouds
and shadows in Section III. Finally, Section IV draws the
conclusion.

II. MULTITEMPORAL DICTIONARY
LEARNING METHODOLOGY

As stated previously, signals/images/data can be sparse or
compressible in some transform domain, which is exactly the
basis of many applications of dictionary learning (see [24]-
[27]). Multitemporal RS data are no exception [23]; they reflect
the physical information from the same area and from different
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periods. Therefore, they contain a great deal of redundant infor-
mation and are more consistent with the sparse characteristic in
the particular transform domain. In other words, the supporting
information from the other temporal data can be exploited by
dictionary learning. In this paper, two kinds of multitemporal
dictionary learning are proposed to recover the QRS data’s
missing information that is occluded by the thick clouds and
attendant shadows. The two proposed methods are based on the
frameworks of KSVD and Bayesian dictionary learning.

KSVD dictionary learning, which was initially proposed by
Aharon et al. [24], is the abbreviation of K singular value
decomposition (SVD) and the derivative and generalization of
the K-means algorithm. It consists of alternating between a
sparse coding stage and a dictionary updating stage.

Bayesian dictionary learning [called beta process factor
analysis (BPFA)] [25] is another increasingly hot topic in
the sparse representation community and is also a kind of
Bayesian compressive sensing [28]. There has recently been
some research into nonparametric Bayesian dictionary learning
as applied to image processing [25], [29]. In the context of CS,
the beta-Bernoulli process is employed as a prior for learning
the dictionary and for inferring an appropriate dictionary size.

In general, KSVD and BPFA can both be directly applied
to the recovery of multitemporal QRS data. However, they do
not take the temporal correlations between the multitemporal
data into sufficient consideration. Accordingly, in the respective
framework of KSVD and BPFA, we propose two algorithms to
make the best use of the temporal correlations. In order to avoid
any confusion, the proposed algorithms are called multitempo-
ral KSVD (MT-KSVD) and multitemporal BPFA (MT-BPFA),
respectively. Further details are presented in Sections II-B
and II-C.

A. CS Theory

CS, breaking through the limitation of the traditional
Nyquist—Shannon sampling theorem, which (Nyquist) specifies
that a signal can be perfectly reconstructed from an infinite
sequence of samples if the sampling rate is two times greater
than the bandwidth, provides an approach to reconstruct a
signal acquired by a projection matrix with incomplete and
inaccurate measurements. Supposing that x is an unknown
noise-free column vector in R™ and W is an orthogonal basis
in R™ ™ then x is expressed as

x =P (D

where « is the basis coefficients in R"™. When the number of
nonzero entries of « is far less than n, x is called sparse to W.
The CS measurement y € R™ is derived by a projection matrix
O € R™*™ (m < n) as

y = ox 2

where @ is called the CS matrix [30], sensing matrix [31],
or measurement matrix [32]. On the premise of m < n, it
is clearly an ill-posed inverse problem to recover x from
y. Fortunately, when the product of ® and U satisfies the
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condition of the restricted isometry property [22], [32], it will
be equivalently translated into a convex optimization

min ||af|; st

y=®Va 3)

where || o ||; signifies the ¢; norm of the entry, which means
the sum of the absolute value of each component of the vector.
To date, several heuristic algorithms for CS recovery have been
developed, such as BP [33], GBP [34], OMP [35], ROMP [36],
CoSaMP [37], SP [38], and FOCUSS [39].

In most cases, it is not necessary to know both ® and ¥ in CS
theory to solve out the sparse representation «. For brevity, D €
R™*™ is usually selected for substituting for the combination of
® and ¥ in (1) and (2), respectively; then

y = Da. 4)

In fact, D amounts to a “black box™ of CS. Although its
components ¢ and ¥ are unknown, its representation o can
also be approximately derived. Duarte et al. [40] considered
D as the holographic basis (the original used another symbol,
not D), and Donoho [20] named it the “information operator.”
From another point of view, D can also be thought of as a
dictionary, with its columns amounting to dictionary atoms. As
D is a flat matrix, it is known as an overcomplete dictionary or
a redundant dictionary. Interestingly, the process of hunting for
D and « has a vivid appellation: dictionary learning [41]. At
present, there are several popular dictionary learning methods,
such as KSVD [24], [26] and Bayesian dictionary learning
[25], [29]. Usually, a typical dictionary learning is an iterative
process which alternates between the sparse representations of
the given signal or image with the current dictionary and the
update of the dictionary atoms.

B. Recovery Using MT-KSVD

MT-KSVD consists of three parts: 1) temporal transfor-
mation; 2) temporal permutation; and 3) dictionary learning.
Temporal transformation is in an attempt to strengthen the
temporal correlation of the multitemporal QRS data. Temporal
permutation is adopted to find an optimized path for the succes-
sive dictionary learning. Generally speaking, the first two parts
are both constructive preprocessing steps of dictionary learning,
which will be verified in the experiments.

First, the temporal transformation is presented. In fact, some
QRS data [e.g., land surface temperature (LST)] may vary
greatly in a short time period. The temporal correlation can
be strengthened by a reasonable way. To this end, a transfor-
mation (linear or nonlinear) from other temporal data to the
corrupted data is adopted. Given a series of QRS data (in the
visible and infrared ranges), {xt}thl € R™*"2 registered on
the same geographical region and from different periods, where
2s(1 < s <T) is contaminated by thick clouds and shadows
(for convenience of description, we just suppose that, in the
time series, there is only one temporal data item corrupted
by thick clouds, and the others are intact). Let €2 and 2~ be
the cloud-free region and the cloud-contaminated region of g,
respectively (see Fig. 1), and the identical spatial regions of
other x;(t # s). Our goal is to transform x;(t # s) into the

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 11, NOVEMBER 2014

spatio-temporal spatio-temporal

Patch B

Cloud-contaminated

N
X
Fig. 1. Reordered multitemporal data overlapping and spatiotemporal patch
extraction.

temporal space of x,. First of all, it is necessary to obtain
the transformation relationship. We assume that the cloud-free
regions of all of the quantitative data from the different periods
satisfy

a2l =fi(23) +ef, te[l,T] and t#s (5)

S

where 2¢! denotes the cloud-free region of x,, {? denotes the
same region of z;, 5! denotes the corresponding residual, and
f+(e) denotes the function relationship, which can be linear or
nonlinear. In the experiments, a simple linear function is set as
the transformation relationship (e.g., 7% = a;2%! + b;, where a;
and b, are the corresponding parameters for different temporal
data). Based on the least squares solver, the basic idea is to
minimize the sum of the squared residuals

Z (6?)2 ,t€[1,T] and t # s. (6)

Q

Once the function is determined, the previous transformation
is successively undertaken as

.’,U? = ft(xt)7

Here, the temporal permutation follows. After the previous
temporal transformation, the transformed versions of the data
{aP}]_ € R™*" (t #s) and x, are obtained. These data
will then consist of a data set X, € R >n2xT according to
their original time sequence. Usually, the time sequence does
not represent the optimal overlapping order. Ram et al. [42]
proposed a shortest spatial path ordering of the image patches.
Inspired by this, we seek a reasonable temporal path, ordering
the time-series quantitative data to make better use of the tem-
poral correlations. Our basic idea is to ensure that the data with
stronger correlations are closer. The reordering permutation
is the optimized temporal path. In other words, this kind of
temporal permutation is similar to fused lasso [43], [44], which
is designed for problems with features that can be ordered in
some meaningful way. According to the features of correlation,
we estimate a new order to permutate the chronological order of
the multitemporal data. The temporal permutation encourages

te€[1,T] and t # s. (7)
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Fig. 2. QRS data changing process before the dictionary learned in the
framework of MT-KSVD.

the local constancy of the sparse dictionary coefficients when
the dictionary learning is being undergone. Additionally, the
metric of correlation is picked as the correlation coefficients
(CCs) between the quantitative data contaminated by clouds
and the other intact data, only for the cloud-free region data.
The CC is calculated by

S (@) = py2) (o = ag)

\/ZQ ((IE?)Q* (a7) Q) \/ZQ - ms)27

t=1,2,....,T (8

CC, =

where CC; is the CC between the cloud-free region of the ¢th
data item and x” and €2 denotes the cloud-free area of x, and
the corresggondlng identical area for the other temporal data,
i.e., (z})"" represents the cloud-free data of x}'; H(zm)® and

fiz© represent the average values of (x , respectively.

Note that (27) = 2.

Once the CCs are calculated, the permutation order of the
multitemporal data is obtained. This order is sorted from the
highest modulus of CCs to the lowest, accompanied with a new
sequence {z}¢" }thl € R™ "2, Suppose that X € Rmxn2xT
denotes the data set with a new overlapping order. It can be
seen that the cloud-contaminated data will be reordered at the
top (see Fig. 1). By means of this permutation, the distance
between multitemporal data items with stronger correlations is
artificially shortened. As a result, the temporal correlation is
made better use of.

In some special circumstances, x, is completely obscured
by thick clouds. Therefore, the CC between = and x; is
unavailable. Correspondingly, in our framework, the average of
all of the temporal data z is considered as the approximate
replacement of x4. Expressions (5)—(8) can then be continued.
In other words, a temporal transformation and temporal permu-
tation is embarked on, in which the average of all of the existing
data is set as the reference data.

After the two processing stages (temporal transformation and
temporal permutation), an operator P is utilized to extract as
many spatiotemporal patches as possible. In other words, P
amounts to a cropping operator which extracts the specified
patch from the data to be processed. For more details about P,
please see [26] and [45]. Fig. 1 shows the extraction process.
Suppose that the size of the spatiotemporal patchesis ! x | x T
We extract the patches column by column, starting from the top
leftmost patch. As a result, we derive N = (ny — 1+ 1)(ns —
[ + 1) patches. We make these patches column stacked, and X
will become a T1? x N matrix X;. Fig. 2 shows the QRS data
changing process before the dictionary learned in the frame-
work of MT-KSVD, implying that the original data are trans-
formed from 3-D to 2-D. Let (PX)%'3k denote X [(e)stack

1) and 2%
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represents the column stack operator], (P, X )%t (k € [1, N])
represents the kth column-stacked patch, and Py is the kth com-
ponent of P, which extracts the kth patch. Finally, recovering
the missing data obstructed by thick clouds is based on the
powerful KSVD dictionary learning [24]. Generally speaking,
for our problem, it is set up as follows:

{{ak}]iv:p ff;} = arg min \|| MY,
Yi{ak}

- X413

+> mkllallo + Y IIDay = Yigl3. (9
k k

This expression purports to show an approximation between
the column-stacked patches X; of the multitemporal QRS data
and the unknown ideal counterpart Y; = (PY )2k (Y is the
ideal version of X), only for the valid or existing pixels.
M 1is a mask labeling the location that is corrupted by the
thick clouds and shadows in the multitemporal QRS prod-
ucts. D € RT”*h (T2 < h) is an overcomplete dictionary,
and o, € R"*1 is the dictionary coefficients of the kth patch.
Yir = (PpY )%tk is the kth column of Y7. A and p, are both
regularization parameters. The second and third terms of (9) are
the local sparse priors of the data, which guarantee that every
patch of the recovered data has a sparse representation meeting
the requirements. On the whole, the quantitative data also have
a sparse representation.

In fact, Elad [45] decoupled the minimization of (9) into
two subproblems of solving &, and ﬁ Given an initial D, the
sparse representations «, are first sought out; then, the columns
of D are updated one after another. In general, these two pro-
cesses operate alternately. For more details, please refer to [45].
Ultimately, the sparse representation of every spatiotemporal
patch is obtained by dictionary learning. However, the resulting
Y] consists of column-stacked patches of size TI?2 x N, and
therefore, we should undertake the inverse transformation of P
and “stack” Y = P’lthaCkA. The missing information will
then be recovered. If the temporal transformation and temporal
permutation are both cancelled, MT-KSVD amounts to KSVD.

From the aforementioned descriptions, we assume that there
is only one data item contaminated by clouds. However, in
practice, there may be a number of data items contaminated.
Accordingly, we can process these corrupted data items one
after another using MT-KSVD, and the previous result is the
basis of the subsequent recovery.

C. Recovery Using MT-BPFA

Here, MT-BPFA is applied to the recovery of cloud-
contaminated QRS data. MT-BPFA does not seek the optimized
temporal path, as in MT-KSVD, but adaptively weights the
temporal correlations between the QRS data. As stated previ-
ously, given a number of multitemporal QRS data items over
the same area {z,},_, € R™*"™, z is contaminated by thick
clouds and shadows. We first put them into a 3-D cube X €
R *m2xT ip chronological order. Subsequently, we extract the
I x 1 x T spatiotemporal patches, sliding with the operator PP
(as with MT-KSVD), and then turn them into column-stacked
versions to get a 71% x N matrix X°. Fig. 3 shows the QRS
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7 overlapped chronologically patches extracted and stacked

original data 3D data 2D data

Fig. 3. QRS data changing process before the dictionary learned in the
framework of MT-BPFA.

data changing process before the dictionary learned in the
framework of MT-BPFA. For the kth column of X, with
the dictionary D € RT¥*" (TI2 < h) and additive noise ¢,
the observation model is as follows:

X? = Day +¢p. (10)

Interestingly, some impactful priors are necessarily taken
into account in the Bayesian framework. Regarding the noise,
it is first imposed on the Gaussian prior as

ex ~ N (0,7 '1g) (11)
where ! is the variance of the normal distribution and I, is
an identity matrix with the size of Q@ x Q (Q = T'?). Further-
more, the conjugate hyperprior is imposed on .

e ~ Gamma(a, b) (12)
where Gamma(e, ®) means the gamma distribution and @ and b
are the shape parameter and scale parameter, respectively.

It is well known that temporal correlations exist between
multitemporal data, which can be beneficial to the data recovery
when the supporting information from the data themselves is
deficient. To make a better use of the correlations, we propose to
adaptively weight the temporal correlations when the dictionary
learning is being undertaken. Briefly, the stronger the correla-
tion is, the heavier the weight is. This idea is accomplished by
applying a prior to the dictionary atoms. Towards this end, d;,
the 7th atom (column) of D, obeys another normal distribution

d; ~ N (0,(QLw) 'Ig). (13)

In this expression, L is a constant which is used to adjust
the joint correlation property of the dictionary atoms, implying
a large deviation bound for the sums of the random variables
[35]. w denotes the weights of the corresponding dictionary
atoms and is a diagonal matrix. In the experiments, the CC
between x:(t # s) and x, is picked as the weight indicator,
only for the shared cloud-free regions of the quantitative data.
Suppose that CC; denotes the weight of z;, which is similarly
calculated by (8), and all CC;’s consist of a vector CC". Given
an extracted patch, for the corresponding components of xy,
CC; will continuously appear [? times in the weight. This
is because, in the extracted components of x;, there are I?
elements. w is calculated by

w = diagonal (span(CC")) (14)
where span(e) is an operator making every element of the entry
(CCP) serially appear [? times and diagonal(e) is an operator
making a vector be a diagonal. In fact, w is a diagonal matrix
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of size T1?(Q). When L = 1 and w is an identity matrix, MT-
BPFA is equivalent to BPFA.

Similar to MT-KSVD, once z, is completely obscured by
thick clouds, the average of all of the temporal data =7 is con-
sidered as the approximate replacement of x. The calculation
of CC; can then be continued. At the same time, 5% of x7} is
randomly sampled as the initial of x,. This is because, if there
is no initial constraint to the data to be recovered, MT-BPFA
will get a very poor result.

To be sparser, the coefficients a; of the dictionary are broken
down into the pointwise product of z; and s [25] as

Qp = 2 O Sk (15)

where zj; is a binary set acting as a mask on sy, and the signifier
(o) means the pointwise product. On one hand, z; obeys a
Bernoulli distribution

K
2~ HBernoulli(m—).
i=1

(16)

Note that the notation II denotes that each component of zj, is
drawn independently from the distributions of the same form
[25]. Hierarchically, 7 has another conjugate hyperprior

T~ ﬁBeta <;{ d(KKl)>

i=1

7)

where ¢ and d are the model parameters and II has a similar
meaning to (16).
On the other hand, sj, is Gaussian distributed

sk~ N (0,7 1) (18)
where Iy, is an identity matrix with the size of h x h (h is the
number of atoms). Similar to 7., s has a gamma prior

~s ~ Gamma(e, f) (19)

where e and f are the shape parameter and the scale parameter,
respectively.

With the aforementioned ample hierarchical and conju-
gate prior distributions, the posterior update equations of the
Bayesian system are analytical. Under such a framework, the
process of the inference and solution is implemented via Gibbs
sampling, as detailed in [25]. The consecutive conjugacy in
the hierarchical model has a great advantage over the posterior
inferences. In fact, it is in line with the typical maximum a
posteriori optimization

—logp(©|X", H)
N h

L
= S 0D o s — XL+ LY ST il
k=1 =1

N
+ 2 3 skl log Gammals. H)

— log Gamma(v,|H) — log f, ({zk}szl; H) +C (0



LI et al.: RECOVERING QRS PRODUCTS CONTAMINATED BY THICK CLOUDS AND SHADOWS

where © means all of the model parameters, X° = {X };}2;1,
H represents the hyperparameter, f), is the beta and Bernoulli
priors in (16) and (17), and C' is a constant. Note that Mj, is the
mask of the clouds and shadows in Section II-B. Finally, as with
the inverse transformation of MT-KSVD, the recovery result
is transformed into the original 3-D version in chronological
order.

Differing from settling out the missing information in one
spatiotemporal patch at a time using MT-KSVD dictionary
learning, MT-BPFA operates all of the patches at the same time.
After repeating a number of cycles, the final result is obtained
by averaging the results of each occasion. Even though the
patches of the same cycle do not overlap, in the whole cycle,
they are overlapped like MT-KSVD. The learning process is
finished by the continuous Gibbs sampling, according to the
inferred posterior, which greatly reduces the time consumption
and operating cost, benefitting from the conjugate priors.

III. EXPERIMENTS AND ANALYSES

To allow a comprehensive assessment of the proposed mul-
titemporal dictionary learning methods, experiments are un-
dertaken to recover the QRS products contaminated by thick
clouds and shadows, accompanied by a series of qualitative
and objective analyses. In general, the proposed methods can
be applied to all kinds of quantitative products of optical and
infrared RS. In terms of the QRS data, one class performs
with stable data features (e.g., reflectance product), and the
other class fluctuates wildly (e.g., LST product). Therefore,
the two products are appropriate as the experiment data to
validate the different aspects of our methods. The cloud de-
tection is not our interest; therefore, we assume that the cloud
mask is interactively accessed by hand. For simplicity, the
250-m resolution reflectance product of MODIS LI1B and
the daily 1-km resolution LST products of MODIS L3 were
chosen as the experiment data and were directly downloaded
from the NASA website (http://ladsweb.nascom.nasa.gov/data/
search.html). Note that these products were georeferenced to
acquire data in the same geographic area and at different times.
The reflectance products were georeferenced by the MODIS
conversion toolkit (MCTK), which was downloaded from the
NSDIC website (http://nsidc.org/data/modis/tools.html), and
the LST products were georeferenced by the MODIS reprojec-
tion tool (MRT), which was downloaded from the NASA web-
site (https://Ipdaac.usgs.gov/tools/modis_reprojection_tool).

Without any special instructions, the size of the spatiotempo-
ral patches is 2 x 2 x T" (T" denotes the number of data items),
h = 256, and D is a flat matrix of size 47 x 256, which is
initialized by discrete cosine transform (DCT). In MT-KSVD,
the transformation function is linear, o = 0.005, and the con-
vergence standard is that the quadratic sum of the difference
between the adjacent two iterations is less than 4702 (as with
KSVDin [24]). InMT-BPFA,a =b=e= f =1x10%,¢c=
d=1,L =80,and Q = 4T.

A. Quantitative Comparisons With Existing Methods

As the Aqua satellite’s afternoon observations combine with
the Terra satellite’s morning observations, we have access to
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TABLE 1
EXPERIMENTAL DATA FOR THE QUANTITATIVE COMPARISONS

Reflectance products LST products
MODO02QKM.A2012182 MOD11A1.A2012067
MODO02QKM.A2012183 MODI1A1.A2012068
MOD02QKM.A2012184 MODI11A1.A2012069
MYD02QKM.A2012185 MODI11A1.A2012070
MOD02QKM.A2012186 MODI11A1.A2012071
MYDO02QKM.A2012187 MODI11A1.A2012072

MOD02QKM.A2012188 MODI11A1.A2012073

daily MODIS quantitative products. For the simulated ex-
periments, we downloaded a group of consecutive seven-day
reflectance products (see Table I). After being georeferenced,
one group of subregions, with the size of 300 pixels by 300
pixels, which are on the Arabian Peninsula [see Fig. 4(a)], was
cropped from them. In terms of the MODIS LST products, we
also downloaded a group of consecutive seven-day products
(see Table I). After georeferencing, we cropped one group of
subregions of the size of 300 by 300 [see Fig. 6(a)].

We use mean absolute error (MAE), mean squared error
(MSE), mean relative error (MRE), and CC [calculated as (8)]
as the evaluation indicators. Given x and y as the data (for
brevity, we suppose that both are vectors here) to be compared,
then MAE is defined by the following expression:

Z |; — i

where M is the length of the vector. MSE is calculated by

MAE(z,y) (20

M

2 D)

i=1

MSE(z,y) = (22)

Supposing that y is the reference data, MRE is computed by

Z ‘*’Lz yz .

First of all, the capacity of the multitemporal dictionary
learning to recover the contamination of large-area thick clouds
is tested. Fig. 4 shows the simulated recovery results of the
MODIS reflectance products on the Arabian Peninsula, includ-
ing HANTS [19], MT-BPFA, and MT-KSVD (in consideration
of the visual similarity of BPFA and MT-BPFA, and KSVD and
MT-KSVD, to save space, we do not show the results of BPFA
and KSVD). Note that the corrupted data items are from the
186th day of 2012, which is the fifth temporal data item in the
group. From the subjective point of view, HANTS introduces
false edges to the result, as shown in the yellow circled regions
in Fig. 4(c), and MT-BPFA and MT-KSVD both keep pace
with the original reflectances and succeed with satisfactory out-
comes. To the best of our knowledge, the existing findings point
to HANTS as having great potential for long time-series data
analysis. However, in our case, there are only seven temporal
reflectances. As a result, HANTS does not get as good an effect
as MT-BPFA and MT-KSVD.

Subsequently, the same (fifth) temporal reflectances of Fig. 4
are completely corrupted by simulated thick clouds (labeled as

MRE(z, y) (23)
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Fig. 4. Simulated thick cloud corruption and the corresponding recovery of the reflectances of MODIS. (a) Original. (b) Simulated thick cloud corruption.

(c) HANTS recovery. (d) MT-BPFA recovery. (e) MT-KSVD recovery.

(b)

Fig. 5.

zeros), as shown in Fig. 5(b), and are recovered by HANTS
and the proposed two methods (again, the results of BPFA and
KSVD are omitted). As seen from the figures, the results of
MT-BPFA display a certain degree of smoothness, and those
of MT-KSVD are alleviated a little. In terms of this kind of
smoothness, they are very close to the average of all of the mul-
titemporal data because of the average being set as the reference
data of MT-BPFA and MT-KSVD. Additionally, as MT-KSVD
is solved patch by patch, the smoothness is weakened. As far
as the visual effect is concerned, HANTS performs the best and
benefits from the temporal and quantitative restrictions of the
harmonic analysis. However, for the quantitative applications,
the visual effect is of secondary importance, and the primary
concern is the objective evaluation, which is stated in the
following.

After the previous visual assessments, the quantitative com-
parisons of Figs. 4 and 5 for HANTS, BPFA, MT-BPFA,
KSVD, and MT-KSVD are made by means of MAE, MSE,
MRE, and CC, as shown Table II. On the whole, MT-BPFA
outperforms MT-KSVD, which benefits from the global solv-
ing solution, and MT-KSVD is solved block by block, which
ignores the global constraint; HANTS, which needs consider-
able temporal data, obtains the worst result. Since MT-BPFA
adaptively takes the temporal correlations into consideration,
it achieves a more pleasing effect than BPFA. With the help
of the temporal transformation and temporal permutation, MT-
KSVD finds such an optimized temporal path that the temporal
correlations play a more important role. Naturally, MT-KSVD
outstrips KSVD. As far as the quantitative indicators are con-
cerned, the improved effect from KSVD to MT-KSVD is more
obvious than that from BPFA to MT-BPFA. The reason for
this is that BPFA itself achieves such a good effect that the
improved capacity of MT-BPFA is limited; however, KSVD

Simulated thick cloud complete corruption and the corresponding recovery of the reflectances of MODIS. (a) Original. (b) Simulated thick cloud
corruption. (c) HANTS recovery. (d) MT-BPFA recovery. (e) MT-KSVD recovery.

TABLE 1I
RECOVERIES OF THE REFLECTANCE PRODUCTS
BY THE DIFFERENT METHODS

MAE/  MSE/ MRE/ Time/

Data Methods 10 10 % CC min
HANTS 10.919  40.812 5.789 0.7983 1.75

BPFA 3.989 2.612 2.170 0.9846 5.43

Fig. 4  MT-BPFA 2.543 1.212 1.380 0.9926 8.80
KSVD 6.318 10.212 3.417 0.9381 10.64
MT-KSVD  4.821 5.012 2.589 0.9703 8.35
HANTS 21.558 77212 11448  0.6528 1.67

BPFA 7.693 13.812 4.121 0.9169 5.31

Fig.5 MT-BPFA 7.686 9.512 4.102 0.9574 8.70
KSVD 10.875 18.812 5.937 0.8846  10.58
MT-KSVD 8337 11.212  4.469 0.9419 8.38

does not achieve as good an effect as BPFA, so MT-KSVD has
more room for improvement. In addition, when the reflectances
are only partly contaminated by thick cloud (Fig. 4), no matter
whether for HANTS, BPFA, MT-BPFA, KSVD, or MT-KSVD,
the results are better than those when they are completely
contaminated (Fig. 5). In terms of the computational time,
HANTS shows an overwhelming advantage over MT-BPFA
and MT-KSVD, and it benefits from a model that is simpler
than multitemporal dictionary learning. Table II confirms that
the proposed MT-BPFA and MT-KSVD are both effective
expanded versions of BPFA and KSVD, respectively.
Similarly, we also undertake simulated experiments using
another group of LST products of MODIS (see Table I). Fig. 6
shows the recovery results with the LST products by the three
methods (for the same reason, the results of BPFA and KSVD
are again not shown), cropped from the aforementioned data
(Table I). Note that the corrupted data are from the 69th day
of 2012, which is the third temporal data item in the group.
As shown in the figures, MT-KSVD results in more obvious
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Fig. 6.
recovery. (d) MT-BPFA recovery. (e) MT-KSVD recovery.

>

(C)Z

(b)

Fig. 7.
(c) HANTS recovery. (d) MT-BPFA recovery. () MT-KSVD recovery.

distortions than MT-BPFA, and HANTS produces the most
artifacts. Moreover, HANTS also introduces some false edges,
as with the previous reflectance experiments. If the multitem-
poral LST data vary greatly or their latent correlations are
not strong enough, the recovery results become worse. Fig. 7
shows the different recoveries of complete corruption of one
temporal LST, using the same multitemporal data as Fig. 6. In
Fig. 7, the corrupted data item is the sixth temporal data item.
Even though HANTS can get a better visual effect than MT-
BPFA and MT-KSVD, its quantitative assessment is the worst
(see Table III), which is the primary consideration in practical
applications. In most cases, LST fluctuates greatly with the
weather conditions on different days, and it is not as stable
as reflectance. Therefore, the recovery results are not as good
as the reflectance. In other words, the temporal correlations
of LST are not so strong that the results are inferior to the
reflectance product. Table III shows the objective assessments.
For the partial corruption (Fig. 6), both MT-BPFA and MT-
KSVD outperform their original versions, BPFA and KSVD.
However, for the complete corruption (see Fig. 7), the CCs of
MT-BPFA and MT-KSVD are superior to BPFA and KSVD.
In terms of the other indicators, MT-BPFA and MT-KSVD do
not show obvious advantages and even show worse effects.
The reason for this is that LST varies dynamically. When
the data are completely missing, the temporal constraint no
longer exists. Correspondingly, the evaluation indicators appear
locally inconsistent. Overall, the change rule is roughly in line
with that of the previous reflectance experiments.

B. Intensive Comparison Between MT-KSVD and MT-BPFA

In the aforementioned experiments, six extra temporal data
items (seven in total, including the corrupted temporal data
item itself) are put in to recover the specific temporal data item
contaminated by thick clouds. It is explored how the different

Simulated thick cloud corruption and the corresponding recovery of the LSTs of MODIS. (a) Original. (b) Simulated thick cloud corruption. (c) HANTS

50°C

Simulated thick cloud complete corruption and the corresponding recovery of the LSTs of MODIS. (a) Original. (b) Simulated thick cloud corruption.

TABLE TII
RECOVERIES OF THE LST PRODUCTS BY THE DIFFERENT METHODS
Data  Methods AP msp  MRE cc  Time
C % min

HANTS  1.033 2857 2445 08647 167

BPFA 0377 0278 0.891 09789 11.46

Fig. 6 MT-BPFA 0214 0.082 0507 09936  14.39
KSVD 1310 5242 3.036 07187 1516
MT-KSVD 0467  0.606  1.103 09533 1478

HANTS 5119 35992 12913 05085  1.63

BPFA 1419 4200 3489 08015  6.85

Fig.7 MT-BPFA 1505  3.506  3.707 09002 14.45
KSVD 2374 8211 5862 07160 14.78
MT-KSVD 1498 3675  3.691 08334 1485

numbers of temporal data items exercise an influence on the
recovery result in the following content. Table IV shows the
quantitative assessments of the recovery results with an extra
1-6 temporal data items, respectively, not including the cloudy
data themselves. As seen from this table, when the extra data
items are few in number, MT-KSVD can get a better result; as
the amount increases, the superiority gradually weakens; when
the number arrives at a certain point, MT-KSVD is surpassed
by MT-BPFA. However, this does not mean that the more data
there is, the better the effect is. As the data become more, the
redundant information will also become more, and the result
may become worse. In other words, MT-BPFA needs more
complementary and auxiliary data to get a satisfactory result;
however, this extravagant demand means that its practicality
and efficiency are significantly reduced. In general, as the data
increase, the time cost also becomes higher.

Overall, MT-KSVD gets a better result with less temporal
data. To allow an intuitive understanding of this rule, the MRE
variation diagram is shown in Fig. 8, with different numbers
of temporal data items for both MT-BPFA and MT-KSVD. In
the figures, a lower point means a lower MRE, i.e., a better
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TABLE 1V
IMPACT ON THE RECOVERY OF DIFFERENT NUMBERS OF TEMPORAL DATA ITEMS

Data Indicators Methods Extra 1 Extra 2 Extra 3 Extra 4 Extra 5 Extra 6
MAE/103  MTBPFA 10197 10183 2980 2685 2657 2543
MT-KSVD ~ 7.002 7254 4760 4490 4536 4821
MSp/os  MI-BPFA 323127 30612 2112 1412 1312 1212
MT-KSVD 13212 13912 5112 4312 4312 5012
i . MT-BPFA 5392 5348 1595 1457 1442 1380
Fig. 4 MRE% \pgoup 3781 3897 2.554 2404 2433 2.589
cc MT-BPFA  0.8446 08531 09880 09918 09921  0.9926
MT-KSVD 09179 09134 09704 09749 09756  0.9703
Timemin MT-BPFA 428 519 6.14 6.79 797 8.80
MT-KSVD  8.03 7.82 8.10 8.39 9.49 8.35
MAEeC  MIBPFA 1505 1455 0964 0639 0237 0204
MT-KSVD  0.825 0679 0457 0444 0449 0467
MSE MT-BPFA 6685 5630 238 0885  0.106 0.082
MT-KSVD 2011 1371 0591 0574 0558 0.606
! MT-BPFA  3.679 3366 2260 1501 _ 0.563 0.507
Fig 6 MREM b ovp 1892 1577 1074 1048 1064 1103
cc MT-BPFA 06440  0.6636  0.8424 09493 09918  0.9936
MT-KSVD 08556  0.8898 09541 09557 09580 09533
Timemin MT-BPFA 4,63 6.45 8.04 935 1212 1439
MT-KSVD  8.69 922 112 1261 1477 1478

Number of data items/MRE variation diagram  Number of data items/MRE variation diagram
L4 T T T T T T 4 T T T T T T

~0-MT-BPFA 3F -0-MT-BPFA
-0-MT-KSVD| -0-MT-KSVD|

o
T

MRE/%
w IS
T T

~
T

1 I 1 I I L 1 0 1 1 I L L 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Number of data items (LST)

(b)

Number of data items (Reflectance)

(@)

Fig. 8. MRE variation diagram of the recoveries of MT-BPFA and MT-KSVD,
with different numbers of temporal data items. (a) For Fig. 4, reflectance.
(b) For Fig. 6, LST.

effect. As can be seen, when the temporal data items are few in
number, MT-KSVD gets a better effect.

Additionally, Figs. 9 and 10 show the scatter plots of the
reflectance (for Fig. 4) and LST (for Fig. 6) products, respec-
tively, between the original and recovered results using different
numbers of extra data items. For brevity, scatter plots with only
one and six extra data items are shown. As can be seen from
the figures, when there is only one extra data item, the points
in the scatter plots of MT-KSVD are more concentrated to the
diagonal than those of MT-BPFA, which means that MT-KSVD
is superior to MT-BPFA. However, when there are six extra data
items, the points in the scatter plots of MT-KSVD are more
discrete than those of MT-BPFA, which means that MT-KSVD
is inferior. In terms of one method, when extra data items are
added, the points become closer to the diagonal, which means
that the effect becomes better. These plots fully demonstrate
that MT-KSVD has more advantages over MT-BPFA when the
data are insufficient and vice versa.

C. Influence of the Initial Dictionary on MT-KSVD
and MT-BPFA

Here, we investigate if the initial dictionary makes a dif-
ference to the results of the methods based on dictionary
learning and sparse representation. Table V shows the effect

on the recovery results of different initial dictionaries (bases).
DCT is generated by discrete cosine transform; USE represents
a uniform spherical ensemble, uniformly distributed on the
unit sphere; Fourier is a partial Fourier ensemble (with unit
Euclidean length); RST denotes a partial real Fourier ensemble;
Hadamard is a partial Hadamard ensemble, generated by the
Hadamard matrix; URP signifies a uniform random projection
ensemble, generated by SVD in our case; and QR is a random
orthobasis ensemble, generated by QR decomposition (some-
times referred to as orthogonal matrix triangularization). For
more details, please see SparseLab (http://sparselab.stanford.
edu/). As far as MT-BPFA is concerned, the influence of the
initial dictionary on the results is very weak. This is because the
process of dictionary learning is undertaken through the Gibbs
sampling, which gets rid of the influence of initials in which
the learned dictionary tends toward stability after simulated
annealing. In spite of this, the initials have different influences
on the resulting recovery of MT-KSVD. For the reflectances,
DCT, Fourier, and Hadamard used as the initial dictionaries can
arrive at the best effect, and for the LSTs, DCT and Hadamard
get the best result. This experiment demonstrates that the initial
dictionary makes a difference to the recovery result of MT-
BPFA and MT-KSVD. In MT-BPFA, the result is only weakly
influenced by the initial dictionary. In MT-KSVD, different
initial dictionaries have different abilities to accommodate data
features. On the whole, DCT has the advantage of stability and
a favorable restoration, and most of the other initial dictionaries
also get reasonable results.

D. Applications to Real Quantitative Products

Based on the same methods as those in the quantitative
comparison experiments, real experiments with the quantitative
products of reflectance and LST (shown in Table VI) are
undertaken in this section. Since cloud detection is not our
interest, the cloud mask is artificially delineated. In addition,
thick clouds and shadows may contaminate several items of the
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Fig. 9. Scatter plots of the reflectance product (for Fig. 4) between the original and recovery using different numbers of extra data items. (a) MT-KSVD recovery
with one extra data item. (b) MT-BPFA recovery with one extra data item. (c) MT-KSVD recovery with six extra data items. (d) MT-BPFA recovery with six extra

data items.
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Fig. 10.  Scatter plots of the LST product (for Fig. 6) between the original and recovery using different numbers of extra data items. (a) MT-KSVD recovery with
one extra data item. (b) MT-BPFA recovery with one extra data item. (¢) MT-KSVD recovery with six extra data items. (d) MT-BPFA recovery with six extra data

items.

TABLE V
IMPACT ON THE RECOVERY OF DIFFERENT INITIAL DICTIONARIES

Methods Data Indicators DCT USE Fourier RST Hadamard URP QR
MAE/103  2.543 2.657 2.669 2.744 2.606 2.568 2.633

MSE/107 1.212 1.312 1.312 1.412 1.312 1.312 1.312

Fig. 4 MRE/% 1.380 1.442 1.448 1.489 1411 1.394 1.424
CcC 0.9926  0.9921 0.9920 0.9916 0.9923 0.9924 09921

Time/min 8.80 8.32 8.53 8.47 8.66 8.85 8.45

MT-BPEA MAE/107° 0214 0.247 0.210 0.214 0.214 0.226 0.223
MSE/107 0.082 0.115 0.083 0.088 0.087 0.098 0.090

Fig. 6 MRE/% 0.507 0.587 0.499 0.508 0.509 0.538 0.528
cC 0.9936 09912  0.9937  0.9935 0.9934 0.9925  0.9931

Time/min 14.39 12.60 14.00 13.37 13.79 13.87 13.41

MAE/107  4.821 9.780 4.112 7.608 4.003 5.103 9.780
MSE/107 5.012 26.912 2912 19.712 3.212 7412 26.712

Fig. 4 MRE/% 2.589 5.202 2.249 4.045 2.183 2.713 5.241

CcC 0.9703 0.8498  0.9834  0.8896 0.9817 0.9556  0.8761

Time/min 8.35 12.04 10.98 14.90 10.45 12.94 12.74

MT-KSVD MAE/°C 0.467 0.952 0.605 1.266 0.568 1.082 1.020
MSE 0.606 2.534 1.029 4.223 1.068 2.824 2.417

Fig. 6 MRE/% 1.103 2.266 1.411 2.981 1.325 2.506 2.374
CcC 0.9533 0.8295 09185  0.7637 0.9160 0.8369  0.8144

Time/min 14.78 17.04 20.93 15.23 17.11 16.93 13.37

quantitative data in the time series. In this situation, the cor-
rupted data items are recovered one by one using MT-KSVD
and MT-BPFA. However, due to the absence of ideal cloud-
free original data, it is impossible to make an objective as-
sessment. First, the experiments are conducted with a group
of reflectances of MODIS. To further validate the proposed
methods, we do not use daily reflectance data as before but
a longer time interval. Fig. 11 shows a group of the original
and recovery results of the MODIS reflectances with a size of
300 by 300 pixels, according to HANTS, MT-BPFA, and MT-
KSVD, respectively (as before, the results of BPFA and KSVD
are not shown). As can be seen from the figures, although the
reflectances are acquired over quite a long time interval, the

large-area thick clouds and consequent shadows are effectively
recovered. In fact, the time interval can be longer on the condi-
tion that the geographical features do not change significantly.
Note that, since there are some overlapping regions corrupted
by clouds, these pixels cannot be processed by HANTS because
of the shortage of data, so they are just replaced by the mean
values of the valid pixels of all of the temporal data. There-
fore, HANTS gets better results than those of the simulated
experiments and also benefits from the high correlations of the
reflectances, to some degree. Additionally, if the thick clouds
and shadows are on the same (overlapping) region in all of
the temporal data, the recovery outcome is poor because of
the disappearance of ample supporting and complementary
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Fig. 11.
recovery.

TABLE VI
EXPERIMENTAL DATA IN THE REAL APPLICATIONS

Reflectance products LST products
MOD02QKM.A2008353 MODI1A1.A2012074
MOD02QKM.A2008360 MODI1A1.A2012076
MOD02QKM.A2008362 MODI1A1.A2012077
MOD02QKM.A2009003 MODI1A1.A2012079
MODO02QKM.A2009005 MODI1A1.A2012081
MOD02QKM.A2009006 MODI1A1.A2012083
MODO02QKM.A2008353 MODI1A1.A2012084

information. In this situation (shown in Fig. 11), MT-BPFA
may produce some artifacts on the overlapping region, and
HANTS and MT-KSVD can both generate some false edges
on the overlapping region. Nevertheless, if the other temporal
data items provide sufficient information, this issue will be
effectively alleviated.

Another group of MODIS LST products is also used in the
real experiments. Similarly, the consecutive daily LST products
are not used in the experiments. As LST can vary greatly with
time, the time interval of the product series is not so long. The
experimental data are shown in Table VI. Like the previous
experiment for reflectances, this group of multitemporal LSTs
are also contaminated by thick clouds and shadows of varying
degrees. Fig. 12 shows the original and cloud recovery results

Real recoveries of the reflectances of MODIS contaminated by thick clouds. (a) Original. (b) HANTS recovery. (¢) MT-BPFA recovery. (d) MT-KSVD

with HANTS, MT-BPFA, and MT-KSVD, respectively, with a
size of 300 by 300 pixels. Fig. 12(a) is on the 79th day of 2012
and is the fourth temporal data item in the group. On the whole,
all three of the methods successfully recover the data corrupted
by thick clouds. As a result of the dramatic changes and the
weak correlations of the LSTs, the results of HANTS, MT-
BPFA, and MT-KSVD are all different from each other. Based
on the visual effects, MT-BPFA and MT-KSVD perform better
than HANTS. However, due to the lack of cloud-free LST, it is
impossible to make an objective evaluation of the results.

IV. CONCLUSION

This paper has proposed two expanded multitemporal dictio-
nary learning (MT-BPFA and MT-KSVD) algorithms for the
recovery of the quantitative products of optical and infrared
RS that are contaminated by large-area thick clouds and the
consequent cloud shadows. Based on BPFA, MT-BPFA uses
CC between the time-series quantitative data as the weights
of the independent dictionary atoms to trade off their latent
temporal correlations; based on KSVD, MT-KSVD first makes
the auxiliary data a linear/nonlinear temporal transformation
to the space of the data to be recovered and then finds an
optimal temporal path through the strength of their CCs when
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Fig. 12. Real recovery of the LSTs of MODIS contaminated by thick clouds. (a) Original. (b) HANTS recovery. (c) MT-BPFA recovery. (d) MT-KSVD recovery.

dictionary learning is undertaken. In general, both methods
can effectively get rid of the harmful influence of clouds on
the subsequent applications with these quantitative products.
However, MT-BPFA achieves more effective results than MT-
KSVD on the condition that more valid data are available. It
is this point that restricts its practical values and industrial
potential. In other words, MT-KSVD gets better effects when
using less data. If the objective condition is sufficient, it will
be a wise choice to resort to MT-BPFA when faced with thick
clouds. Additionally, in terms of MT-BPFA, a gamma prior for
the variance of dictionary may be imposed so that it can be
automatically determined from the data, which is our future
research direction.
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